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ABSTRACT 
 

The attack of choice for a professional attacker is system subversion: the insertion 

of a trap door that allows the attacker to bypass an operating system’s protection controls. 

This attack provides significant capabilities and a low risk of detection. 

One potential design is a trap door that itself accepts new programming 

instructions. This allows an attacker to decide the capabilities of the artifice at the time of 

attack rather than prior to its insertion. Early tiger teams recognized the possibility of this 

design and compared it to the two-card bootstrap loader used in mainframes, since both 

exhibit the characteristics of compactness and adaptability. 

This thesis demonstrates that it is relatively easy to create a bootstrapped trap 

door. The demonstrated artifice consists of 6 lines of C code that, when inserted into the 

Windows XP operating system, accept additional arbitrary code from the attacker, 

allowing subversion in any manner the attacker chooses. 

The threat from subversion is both extremely potent and eminently feasible. 

Popular risk mitigation strategies that rely on defense-in-depth are ineffective against 

subversion. This thesis focuses on how the use of the principles of layering, modularity, 

and information hiding can contribute to high-assurance development methodologies by 

increasing system comprehensibility. 
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EXECUTIVE SUMMARY 
 
It was said of the far-flung Roman Empire that all roads led to Rome – north, 

south, east and west. And it was through that road system that Caesar extended his writ 
far and wide. And they were great roads. But there is a funny thing about roads. They go 
both ways, and when the Vandals and the Visigoths decided to attack Rome they came 
right up the roads.† 

Like the roads of the Roman Empire, the roads that make up the Information 

Superhighway go both ways as well. Like the Roman network of roads, the Internet has 

been responsible for tremendous improvements in efficiency and productivity. However, 

it also exhibits the Pandora’s-box-like quality: every improvement is linked with a 

danger.  

Understandably, the security threats that receive the most attention are those that 

are observed such as web-site defacements and viruses that arrive with email messages. 

The threats more deserving of concern are those more likely to have a significant 

impact—such as a disruption of critical infrastructure or a compromise to national 

security—and less likely to be observed. For many decades, security researchers have 

been aware of the most potent threat: operating system subversion. System subversion is 

the intentional modification of a system prior to its production use (such as during 

development or distribution), which allows the subverter to completely bypass the 

system’s security controls. The code that achieves this bypassing of controls is known as 

a “trap door” or an artifice. Because planning is required, subversion is typically seen as a 

professional attack, one most likely to be conducted by a nation state or other visionary 

organization. 

This thesis builds upon the previous research on subversion that has been 

conducted at the Naval Postgraduate School. In 1980, Philip Myers published a thesis 

that outlined the desirable characteristics of a subversion artifice [MYER80]. Myers 

highlighted six desirable characteristics of a trap door artifice, including compactness, 

adaptability, possession of a unique trigger, untraceability, and independence from both 

operating system upgrades and variations in installation. 

                                                 
† From Friedman, Thomas L., The Lexus and the Olive Tree: Understanding Globalization, Anchor 

Books, p 322, May 2000. 
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In 2002, Emory Anderson demonstrated the ease with which a subversion artifice 

may be implemented, adding 11 lines of code to Linux that bypassed the Network File 

System permission controls [ANDE02]. The behavior of the Anderson artifice was static, 

lacking the characteristic of adaptability mentioned in the Myers thesis. 

The idea of an adaptable artifice originated with some of the earliest vulnerability 

assessment teams (also known as “penetration” or “tiger” teams), who were well aware of 

trap doors. The teams envisioned that an artifice could be constructed that would take 

additional instructions as input, thereby allowing the artifice to be programmed. The 

concept of a programmable artifice was likened to a traditional bootstrap mechanism, 

wherein the initial input is composed of instructions that enable the system to load even 

more instructions. 

This thesis provides a demonstration of an adaptable artifice, showing that adding 

the characteristic of adaptability to the artifice requires little additional effort or technical 

expertise. Bootstrapping is the key to satisfying the inherently contradictory goals of 

compactness and adaptability. The artifice demonstrated in this thesis – consisting of 6 

lines of C code that can be added to the Windows XP operating system – is able to accept 

additional code, thereby supporting the implementation of an arbitrarily complex 

subversion, and allowing an attacker to program the artifice at the time of attack rather 

than having to predict the desired capabilities prior to its insertion. The implemented 

artifice exhibits all six characteristics identified by Myers as desirable. 

The threat from subversion is both extremely potent and eminently feasible. 

Nevertheless, the dominant risk mitigation strategy, rather than increase the assurance 

level of the most critical assets, is to use multiple solutions in parallel to achieve 

“defense-in-depth.”  This paradigm is so accepted, in fact, that it has become an official 

part of the Department of Defense’s information assurance policy. Unfortunately, the 

solutions in question, such as firewalls, intrusion detection systems, etc., have all been 

shown to be ineffective against subversion.  

The only accepted solution for ensuring the absence of a subversive artifice is to 

apply a strict development methodology specifically designed to provide high-assurance. 

This thesis describes how some of the accepted but frequently overlooked principles of 
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programming contribute to this methodology. Specifically, the thesis discusses layering, 

modularity, and information hiding, and how these principles contribute to reducing 

complexity, achieving system comprehensibility, enabling the application of formal 

methods, and segmenting a trusted computing base from non-trusted components. The 

thesis also addresses the impact of the use of highly structured techniques on system 

performance. 
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I. INTRODUCTION 

It was said of the far-flung Roman Empire that all roads led to Rome – north, 
south, east and west. And it was through that road system that Caesar extended his writ 
far and wide. And they were great roads. But there is a funny thing about roads. They go 
both ways, and when the Vandals and the Visigoths decided to attack Rome they came 
right up the roads.† 

We live in the Information Age. Today the important roads are the ones that carry 

ones and zeros rather than those that carry modern-day chariots. While the technology 

market bust at the turn of the century reduced the use of hyperbole, the radically 

transforming nature of the information technology, from microchips to the Internet, 

cannot be denied, and indeed is hard to overstate. 

Yet for all the dramatically positive attributes that information technology-related 

progress has brought, there is a dark side to the progress as well. While information 

technology has become very adept at expanding capabilities and features, it has made 

comparatively little progress at providing security. This is not to deny the prodigious 

efforts that have been focused on security, especially recently, as the extraordinary 

growth in the field has exacerbated security issues. Corporations have been developing 

and refining a multitude of security products, such as firewalls, intrusion detection 

systems, and system security enhancements. The reason that little true progress has been 

made is that most current efforts are focused on the wrong part of the problem. Security 

consists fundamentally of two components: a mechanism that implements some security 

feature, and assurance that the mechanism operates as advertised. One would not, for 

example, hire a bodyguard if the bodyguard were not both capable and trustworthy: one 

attribute without the other is of little use. The problem with the current approaches to 

security is that efforts focus on the mechanisms. As every new threat or technique arises, 

a security mechanism or feature is developed to address the threat. Unfortunately, adding 

one mechanism on top of another mechanism can do nothing to increase the assurance of 

                                                 
† From Friedman, Thomas L., The Lexus and the Olive Tree: Understanding Globalization, Anchor 

Books, p 322, May 2000. 
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the overall system. Any weakness in the foundation of the system will be exploitable, 

even if the higher supported layers are strong. 

The truly critical issue today is the lack of product diversity. Without a rich 

variety of systems from which to choose, with each system providing a different level of 

assurance to meet the needs of different risk profiles, effective management of risk is 

impossible. Imagine that an IT manager’s only choices are between one system that does 

not meet the assurance requirements but does meet functionality and budgetary 

requirements, and another system that exceeds assurance requirements but whose 

functionality is untested and whose cost far exceeds the limitations of the budget. What is 

the correct choice in this scenario? Obviously there is none. 

A couple decades ago, the potential threats to computer systems were understood 

and research was conducted into how to build computer systems that were capable of 

enforcing security policies with a high level of assurance. In the mid-80’s, the 

government tried to establish a marketplace for systems with a range of assurance levels; 

however, for a variety of reasons this marketplace was never firmly established. 

Since that time many things have changed: computers have become ubiquitous, 

and in today’s highly networked world, the need for secure computer platforms is higher 

than ever. Ironically, the operating systems commonly available do not take advantage of 

previously developed techniques for designing secure systems. 

One of the most significant threats against computer systems is the subversion of 

an operating system: the intentional modification of a system to allow the complete 

bypassing of security controls via a “trap door.” In March of 2002, Emory Anderson 

published a thesis [ANDE02] demonstrating the implementation of a subversion artifice, 

showing that relatively little technical expertise is required to carry out such an attack. 

His demonstration exhibited several advantageous traits, such as compactness (with the 

accompanying natural resistance to discovery), possession of a unique trigger, and 

untraceability. His artifice, however was static, being pre-programmed with a specific 

behavior, and thus giving the impression that it would be difficult for a potential 

subverter to effectively deploy a subversion attack against a specific target.  
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The idea that it would be possible to design a subversion artifice that could accept 

new code was realized at the very beginning of research on computer security. Roger 

Schell described the idea’s origin [SCHE03]: 

During some of my early tiger team participation with Jim Anderson and 
others, it was recognized that a significant aspect of the problem of Trojan 
horse and trap door artifices was the ability of the artifice itself to 
introduce code for execution. A self-contained example was a subverted 
complier in turn emitting an artifice, as hypothesized in the early 1970's 
Multics evaluation by Paul Karger and me [KARG02], which stimulated 
Thompson's discussion of this in his Turing lecture [THOM84].  Soon 
after Karger's report, other tiger team members observed that the 
ultimately desired artifice did not have to be self-contained, but could be 
imported later.  It was suggested that a particularly insidious packaging of 
this could have the initial artifice provide the functions of simple bootstrap 
loader typically hardwired in the computers of that era.  These loaders did 
something like read the first two binary cards from the card reader and 
initiate execution of what was read, which was usually a further bootstrap 
program to read and execute additional binary cards. Hence this class of 
attack came to be commonly referred as the “2-card loader problem.”   

The concept and term became quite commonplace, although I don't know 
of any widely reported actual implementation. Myers during his 1980 
research at NPS was well aware of the 2-card loader problem, and his 
thesis implicitly included this in the trait of a trap door he termed 
“adaptability” which included being “designed to modify operating system 
code online.” [MYER80].  Much later Don Brinkley and I in our 1995 
IEEE essay had the 2-card loader problem in mind when we briefly 
described a hypothetical attack where, "Among the functions built into the 
Trojan horse was the ability to accept covert software 'upgrades' to its own 
program." [BRIN95]. 

The hypothesis of this thesis is that creating a flexible subversion artifice – one 

which allows the desired subversion to be programmed at the time of attack – is not much 

more difficult than creating a fixed artifice, and well within the capability of a 

professional attacker. Additionally, such an artifice could retain the characteristics that 

have been demonstrated in static artifices, such as compactness, possession of a unique 

trigger, and untraceability. 

The demonstration associated with this thesis is a collaborative effort. This thesis 

deals with only one portion of the overall artifice design, specifically the compact toe-
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hold code which is inserted into the operating system, and the bootstrapping of that toe-

hold into a base or foundation that provides some simple services to the designers of a 

specific artifice. Two other theses are contributing towards the other aspects of building 

the entire artifice. David Rogers is working on the methods by which the artifice may be 

expanded to an arbitrarily large size, dynamically linked, and made persistent [ROGE03]. 

Jessica Murray is developing a specific artifice that subverts the IPSEC subsystem, 

causing it to reveal its traffic and keys to the attacker [MURR03]. All three efforts are 

being supported by Microsoft Corporation, and are using Windows XP as the target of 

subversion. 

The rest of the thesis is organized as follows. Chapter II provides a background on 

the history of secure systems, classifications of threats, and details on the subversion 

threat in particular. Chapter III describes the details of the demonstration of an adaptable 

subversion artifice. Chapter IV provides an analysis of the difficulty involved in 

implementing the artifice and the impact on the threat model. Chapter V outlines 

measures that may be taken to counter the subversion threat, and specifically addresses 

the importance of modularity, information hiding, and layering to the overall measures 

taken. Chapter VI concludes the thesis.  

 



 5 

II. BACKGROUND 

A. HISTORY OF SECURE SYSTEMS 

 In today’s increasingly automated and networked world, the issues of security and 

privacy in relation to computing systems are increasingly becoming mainstream topics. 

Attacks that occur against the infrastructure of the Internet or major Internet companies 

are headline news. Today, one might overhear conversations on the street about solutions 

for firewalling home computer systems, or about a recent run-in with a computer virus 

spread through email. Some prominent cyber-criminals have achieved infamy through 

their exploits, and in several cases following their incarceration have become high-paid 

security consultants. To many the recent phenomena of personal computers, cell phones, 

and the Internet—markers of the Information Age—seems to be a Brave New World. 

This new world, in addition to bringing remarkable capabilities and potential for new 

efficiencies, brings with it in Pandora-box fashion new dangers and threats. 

Today’s common computer user must deal with a myriad of issues regarding 

computer security. He must make sure he is using virus protection software and that the 

software is updated with the latest signatures. He must ensure that security patches for his 

operating system(s) are administered. He must worry about whether his home network 

and systems have an adequate firewall. He must maintain his own backup files to insure 

against any unforeseen loss. Yet how must this person feel about the state of computer 

security when the parties who are truly concerned with computer security such as 

prominent Internet-based companies and the government, are themselves vulnerable to 

cyber-attack. Although most of the press revolves around low-level attacks such as web-

defacement, it is not surprising that more significant attacks fail to reach the media due to 

the potential damaging publicity that could impact both corporate and government 

interests. It may surprise today’s average computer user to know that most of the 

computer security issues we face today, including the most potent threats, were well 

understood three decades ago. What may be even more surprising is that the research 

conducted at that time, at the start of the Information Age, actually resulted in the 



 6 

production of systems that were significantly superior to today’s systems with regard to 

security, but that for a variety of reasons failed commercially. 

The first computers were tremendously expensive devices: the computer’s time 

was many magnitudes more valuable than the operator’s time. Since the computer 

worked so much more quickly than the operator, the obvious solution was to program the 

computers to service many operators at the same time. This time-sharing feature 

unfortunately created a new computer security threat. Whereas before time-sharing the 

access to the computer could be controlled with physical security, once time-sharing was 

developed, physical security could no longer be used. With time-sharing, the critical 

difference was that  the security mechanism of the computer system itself was 

programmed, opening up the possibility that someone could reprogram (and thus subvert) 

the security mechanism. This observation was first made in the Air Force Computer 

Technology Planning Study [ANDE72]. This report introduced the concept of a security 

kernel, one core part of the system that integrates all security functions, and the concept 

of a Reference Monitor, an abstraction that serves to formalize the notion of protection. 

The primary purpose of these concepts is to make the security components small enough 

that they can be analyzed and understood completely, thereby providing assurance that 

the desired protection principles are satisfied and that no subversion of the protection 

mechanism has been conducted. 

The first commercially available system designed around the security kernel 

concept was the SCOMP [FRAI83]. However, not all operating systems adopted these 

principles. The Multics operating system, for example, failed to incorporate this design 

despite the fact that it was specifically designed to meet requirements for security. In 

1974 Karger and Schell published an evaluation of the security of the Multics operating 

system. In this evaluation they showed that although Multics was designed with security 

goals in mind and assumed to be secure by its designers and users (and indeed was 

significantly more secure than common contemporary systems), it was still extremely 

vulnerable to the introduction of malicious software. 

In 1973, Bell and LaPadula published a report [BELL73] showing that it is 

possible to mathematically formalize the specifications of a security policy that specifies 
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what it means to preserve confidentiality. Later, Biba [BIBA77] showed that a similar 

model could be used to describe information integrity. These are known as mandatory 

policies.. A mandatory access control policy is a homomorphism on an access control 

matrix, creating specific equivalence classes of subjects and objects and reasoning about 

those classes. Mandatory policies only work, of course, if the classes are permanent and 

may not be reassigned (or reassignment would take place outside of the model). Note that 

the policies that are to be enforced, be they discretionary or mandatory, are orthogonal to 

system enforcing the policy. The security-kernel approach suggested in the Anderson 

report recommended keeping the security-kernel minimized so that it could be verified as 

correctly enforcing the policy.  

The policy is important to the design of secure system as well, however, due to 

the likely avenue of attack. While one potential tactic is to attack the security mechanism 

of the operating system itself, another is to try to masquerade as a user with a higher level 

of privilege. Since the privilege levels of users, including the administrator, are typically 

encoded within the policy, mandatory access control policies can help ensure that 

attempts to gain additional rights are restricted. Especially useful in this regard is the 

Biba policy, which can serve to maintain the integrity of components of the operating 

system. 

In 1985, the government published criteria for evaluating the assurance class of an 

operating system, called the Department of Defense Trusted Computer Evaluation 

Criteria (TCSEC) [DOD85]. With the support of the government guidelines created in the 

TCSEC, many commercial attempts were made at producing a secure operating system to 

support the needs of the government. Although some systems were created and 

successfully evaluated, for a variety of reasons these attempts were not in the end a 

market success. 

 Today more than ever there is a need for high-assurance operating systems. 

Today’s de facto standard for operating systems severely limits choices. Given that 

different users of information technology have dramatically different tolerances for risk, 

the limitations dictated by the few dominant commercial operating systems have the 
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potential to result in potentially catastrophic outcomes. Loscocco highlights some of the 

needs that are directly addressable today [LOSO98]: 

• Within a Public Key Infrastructure, the need to maintain highly secure 

Certificate Authority sites, as well as the need for the protection of end-

systems with regard to the integrity and confidentiality of public and 

private keys (respectively) and the integrity of the public-key process. 

• For encrypted connections, the need to maintain the security of the end-

points and in some cases a local key management server (for IPSec). 

• For voting applications, the need to maintain the integrity of the voting 

mechanisms of the end-user voting terminals. 

As pointed out by Loscocco, the creation of any secure application without a 

secure operating system on which to run the application is tantamount to building a 

“Fortress built upon sand.” That is, if the operating system is weaker than the application 

(or related cryptographic operation), then the operating system will become the target of 

an attacker. Once the operating system is compromised, the secure application is 

invariably compromised as well. 

B. THREATS TO INFORMATION SYSTEMS 

In 1980, Myers outlined a taxonomy for categorizing the ways in which internal 

computer system controls may be attacked. He divided potential attacks into three 

categories, inadvertent disclosure, penetration, and subversion. Inadvertent disclosure 

relies upon a confluence of events (which may include human error) that conspire to 

reveal information that should have been kept confidential. Penetration describes a 

situation in which the attacker takes advantage of a flaw in an operating system to gain 

unauthorized access or control. The skill level of the attacker is not specified: it could be 

someone who is inexperienced and may be easily caught or a professional cracker. 

Subversion is the intentional undermining of the computer systems security controls 

through the introduction of an artifice, or piece of code, at any point in the system 

lifecycle. In Myers’ ontology, subversion includes both trap doors and Trojan horses. 

Trap doors are distinguished by the fact that they may be activated directly, whereas a 
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Trojan horse lures a user to activate it, and is limited to acting on behalf of a user. The 

following figure shows this categorization: 

 

 
Figure 1.   Myers’ Attack Categories 

 

Much has changed in the last 23 years since Myers published his thesis, yet the 

categorization he proposed is still relevant. In 1980, the term “script-kiddie” had not been 

invented, whereas today it sees common use. Likewise, today people use the term 

“spyware” to refer to software that, in addition to its primary capabilities that are 

marketed, covertly sends information about the user to a centralized site to ostensibly 

assist with the effective targeting of advertisements. Today, a trap door is likely better 

known as a “root kit,” software that is installed after a penetration takes place that allows 

the attacker to regain access to the compromised system while evading detection. The 

fact that the most common method for installing a trap door is to first penetrate a system 

illustrates the magnitude of the problem today. Indeed, the ease with which today’s 

systems may be penetrated may be part of the reason why subversion garners so little 

attention. If penetrating a system were not so trivial, attackers would begin to look at 

targeting a system earlier in its lifecycle. 

Myers’ categorization includes a characterization of the attacker. Myers maintains 

that although the technical skills required for any of the specific attacks is not very great, 

by definition the act of subversion implies a more disciplined and more methodical 
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approach to the attack, one which would be carried out by a professional or group of 

professionals with a specific objective. Penetration, in contrast, is painted as the type of 

activity that is today attributed to script-kiddies: actions by a lone user with limited aims. 

Today, the mapping between the seriousness or sophistication of an attack and the 

attacker’s technical expertise is less clear. For example, imagine that a company that 

provides free software for playing music has also added code in the software that scans 

one’s computer for cookies and keywords that indicate the interests of the user, allowing 

the company to provide targeted advertising. Such Trojan horse code certainly violates 

the security policy that most users would like to enforce, in this case referring to the 

personal privacy component of the policy. Although such an example may be 

characterized as subversion since the implementers were certainly skilled, motivated, and 

well organized, it likely does not match the profile of a serious, professional subverter. 

Also, software tools have been developed that make implementing a Trojan horse trivial. 

Often such techniques are used simply to gather passwords in order to further the 

penetration exploits of non-serious actors. Likewise, as Myers readily indicates, an 

attacker utilizing penetration is not necessarily an amateur. Some of the tools that have 

been developed to conduct penetration are in fact very sophisticated, and penetrations by 

skilled attackers are often accompanied by the installation of root kits to establish a back 

door. 

Despite the inconsistency of the models that has arisen due to the sheer magnitude 

of the progress that has been made in information technology, the intent of the taxonomy 

is clear and remains valid: with regard to computer system attacks, there is a tremendous 

difference between non-serious and serious actors. Non-serious actors typically act alone 

or in loose-knit groups, use tools that others create, and have limited goals, motivation, 

and time-frames. Serious actors are highly-skilled and highly-organized, operate as an 

organization rather than as individuals, have aggressive goals and strong motivation, and 

are capable of long-term planning. Non-serious actors will tend to employ techniques that 

are convenient, whereas serious actors will employ techniques that best enable them to 

achieve their purpose. 
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The one technique that is solely in the toolkit of a serious actor – and would be 

unlikely to be used by a non-serious actor – is the insertion of a trapdoor subversion 

artifice into a system early in its lifecycle (before deployment). Note that this does not 

include a root kit installed after a penetration has occurred. The property that makes this 

particular technique relevant to only the serious actor is the timeframe and planning 

involved. A non-serious actor would be unlikely to have a long enough planning horizon 

to make such efforts meaningful, and would also be unlikely to have the organizational 

resources needed to carry out such an effort. A trapdoor artifice has a couple important 

advantages over a Trojan horse. First, a Trojan horse requires the cooperation of the 

victim (although the victim may be unaware of having cooperated), thereby reducing the 

attacker’s ability to plan and to be certain of outcomes. Second, a Trojan horse is limited 

to operating within the privilege level of the user. Although crackers have become very 

proficient at escalating privilege levels on common operating systems, a system that can 

effectively separate privilege levels, such as one enforcing a mandatory access control 

policy, makes this attack of questionable value. A trap door, on the other hand, is 

activated by the attacker directly, and is essentially unlimited (that is, limited only by 

design) in how it can subvert the protection mechanisms of the operating system. 

Although a trap door is designed to circumvent normal system controls, the 

circumvention process does not necessarily draw attention to itself since the artifice can 

be designed to be a part of the system: technically there is no distinction between the 

artifice and the operating system; the artifice that subverts the protection mechanism is 

the operating system. 

Although there are some additional hurdles to overcome in order to install a 

trapdoor artifice, there are some compelling advantages. Subversion in general has the 

advantage, as already mentioned, of being unlikely to be detected. This is because the 

subversion is designed to operate either as the operating system or as a user (in the case 

of a Trojan horse), and therefore its actions are not considered to be “abnormal.” A trap 

door subversion will ideally be controlled by an activation mechanism. When it is not 

needed, it is deactivated, making detection of its existence much more difficult. 
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Unlike a root kit that is installed following a penetration, a subversion artifice 

does not leave a trail of evidence, digital bread crumbs if you will, that point to its 

existence. A penetration will necessarily cause a change to the system that can be tracked. 

Even a very skilled attacker is unlikely to be able to completely erase all traces of a 

penetration. File integrity verification tools (such as Tripwire), the built-in auditing 

features of a file system that track all accesses and modifications to files, the traces of 

files that remain on a disk even when files are overwritten, and even the memory that is 

overwritten when a buffer overflow takes place all potentially contribute to the trail of 

evidence that may be forensically examined to verify that a penetration has taken place 

and to explain how it was performed. With subversion, such a trail of evidence does not 

exist, so it is much more difficult to know whether your system has been subverted or 

not. 

Another advantage of a trap door subversion is that it is possible to deploy a 

subversion artifice widely, even if the subversion will only be used in a limited context. 

C. SUBVERSION VIA TRAP DOOR ARTIFICE 

1. Desirable Artifice Traits 

Myers details several of the traits that are considered to be desirable in an artifice. 

These include compactness, revision independence, installation independence, 

untraceability, being uniquely triggerable, and adaptability. I will explain each of these in 

turn, clarifying why these traits would be useful, and how the subversion example 

provided by Anderson measures up to the desired traits. 

a. Compactness 

Compactness contributes to the inherent ability of the subversion artifice 

to remain undetected. Since the only way to determine whether an artifice exists is to 

understand the actual code being carried out by the system, maintaining compactness 

makes positively identifying subversion code much more difficult. Anderson was able to 

implement his demonstration of subversion with only 11 lines of C code.  
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b. Possession of a Unique Trigger 

He followed the prescription Myers gave for the trap door precisely, 

adding artifice code to recognize the activation or deactivation trigger, and based on that 

trigger set or disable the master mode, which in his case affected the file access 

permission checking code. 

c. Revision Independence 

Revision independence is tied to the nature of the attacker, a serious actor 

with a long planning horizon. Such an attacker might install the artifice early in the 

lifecycle of the system, and may not know exactly when the artifice will be used. If the 

artifice is corrupted by later revisions, the investment made by the attacker will be lost. 

Therefore, it is important to ensure that the artifice will survive system updates and 

revisions. Myers suggests that device drivers are a good choice since they generally don’t 

change with software revisions, and since they are often coded in low level languages 

they are more difficult to understand, and therefore less likely to be identified as 

subversive. Myers, however, perhaps did not anticipate the tremendous pace of change 

that has taken place in the world of hardware in the past two decades. This rapid pace of 

change in hardware has actually reversed the trends one may have reasonably expected 

about hardware and software. 

The software with the highest rate of change has been the software closely 

associated with hardware, and software with the lowest rate of change has been the more 

abstract “higher level” code that implements standard protocols. For example, many 

systems today still carry the original TCP/IP code that helped to make TCP/IP a 

worldwide standard. In contrast, the entire architecture of Windows device drivers has 

been redesigned several times, and each new architecture has generally maintained little 

compatibility with previous architectures. Naturally, each new architecture has required 

completely new code for each individual device. Also, hardware components themselves 

have very short production lifecycles. Even software that is part of the operating system, 

but that interfaces with device drivers, is subject to fairly frequent modification, as shown 

by the fact that the Windows Network Device Interface Specification (NDIS) has 

undergone a major revision with each new operating system update. 
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Given these facts, it appears that for an artifice to achieve revision 

independence, it is better to insert the artifice in code that provides compatibility with 

widely-adopted standards. The Anderson demonstration (in part) is installed in the 

software that implements the TCP/IP stack, which would be likely to survive operating 

system revisions. 

d. Installation Independence 

Installation independence is important when the same operating system 

may contain different components depending upon the needs of the particular installation. 

This applies to custom-designed solutions that may only include specific components in a 

particular installation, a practice that was likely more common a couple of decades ago. 

However, it also applies to the installation approach common in today’s systems, which 

is to install a standard operating system platform that includes a superset of what most 

customers need, and turn off the components that are not desired. For example, if a 

particular installation does not provide network access to a file system for remote access 

by clients, then an artifice that bypasses the permission checking of only this service will 

not be usable. Thus, the Anderson demonstration arguably does not provide a high degree 

of installation independence. 

e. Untraceability 

Untraceability is achieved by minimizing the impact on the system, which 

can take the form of either an audit trail or changes to the system that can be examined 

forensically. A trap door subversion has the advantage of operating as the system itself. 

Contrariwise, a Trojan Horse, since it operates effectively as the user who ran the code, is 

subject to the auditing procedures that apply to all users. The Anderson demonstration 

exhibits a high degree of untraceability. 

f. Adaptability 

Adaptability allows a subversion artifice that is planted at one point in 

time to be modified at some point after the insertion. The Anderson demonstration 

exhibits little adaptability, since the artifice has few options. Although system files with 

new artifices may be loaded onto the system using the artifice, the artifice itself has 

limited state. The logical extreme of adaptability is complete programmability. 
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2. The Erosion of Concern about the Subversion Threat 

The Myers thesis, which highlighted the subversion threat, contributed to the 

development of criteria that could be used to ensure the development of systems that are 

verifiably secure, e.g. that can be shown to be free of a subversion artifice. For nearly two 

decades, efforts were made to address the subversion threat. The government, in addition 

to creating the TCSEC, mandated that for high-assurance needs the government only use 

systems certified as meeting the requirements of the TCSEC. This prompted development 

efforts by commercial companies to develop systems to meet the high-assurance 

requirements. For a variety of reasons, including the fact that government agencies failed 

to heed the mandate, the efforts to create a marketplace for systems that could provide a 

rich variety of assurance levels failed. Today, the TCSEC has been replaced by the 

Common Criteria, and although companies who produce COTS products do continue to 

achieve certification of their existing products at the medium assurance levels, the 

marketplace for high assurance systems, including those capable of addressing the threat 

of subversion, has dried up. Speculation regarding the social and political factors that 

produced an initial surge of corporate development and the following cancellation of such 

efforts is beyond the scope of this thesis. 

The reaction to the failure of high-assurance efforts has been curious, however. It 

appears as though the impression that no adequate solution exists to address the threat of 

subversion has given rise to the opinion that subversion is no longer a significant threat. 

Given the importance of information technology to the future and the fact that these 

perceptions are driving critical policy decisions, the magnitude of the danger that such 

misjudgments represent is enormous. 

The turning point that officially marked the government’s capitulation on its 

efforts to create high-assurance systems was the signing of DoD Directive 8500.1 

October of 2002 [DOD02]. This new directive cancelled DoD Directive 5200.28, 

“Security Requirements for Automated Information Systems (AISs),” [DOD88] which 

had enforced the application of the TCSEC to automated systems. Whereas the 

philosophy of the former security requirements focused primarily on assurance 

measures—ensuring that systems are designed from the ground up to meet specific 
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assurance objectives—the philosophy of the new directive is focused on achieving 

security goals through the application of “Defense in Depth.” The directive defines 

“Defense in Depth” as: 

The DoD approach for establishing an adequate IA posture in a shared-
risk environment that allows for shared mitigation through: the integration 
of people, technology, and operations; the layering of IA solutions within 
and among IT assets; and, the selection of IA solutions based on their 
relative level of robustness. 

Robustness, as defined by the document, is intended to address assurance issues, 

albeit with more flexibility and less precision than the previous directive. The key change 

with the defense in depth approach is that there is now the idea that one’s information 

assurance posture may be raised via the layering of information assurance solutions. This 

principle of “security through addition” is illustrated by such measures as active 

penetration testing, perimeter defense, and intrusion detection. Unfortunately, history has 

shown that all of these measures fail against the threat of subversion, even when several 

measures are used in parallel. The perception that additional measures lead to additional 

mitigation of risk is false. Evidence of the inadequacy of testing and perimeter defenses 

are provided in the Emory Anderson thesis [ANDE02]. 

Prior to DoD Directive 8500.1, a report on the insider threat [OASD00], 

published in 2000 by the Office of the Assistant Secretary of Defense, illustrated the 

perception that subversion is not a significant risk. This report downplays the subversion 

risk by claiming that it is too hard. It posits that an individual developer of a COTS 

product intent on subverting the system would have “an extraordinarily difficult task” in 

targeting an individual customer since the production and distribution of the product is 

independent from the developer. The would-be subverter “would have to deliver the same 

product to all customers while retaining the ability to isolate a particular customer for 

exploitation.” 

That such a subversion is not “extraordinarily difficult,” but is rather exceedingly 

easy is precisely the objective of this thesis. The fact that the author, in a short amount of 

time, was able to create a subversion artifice that could be inserted into every copy of a 



 17 

product, yet be selectively activated and customized, shows the technical feasibility of 

such a task, and hopefully will serve to highlight the danger of underestimating the threat 

of subversion. 
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III. DEMONSTRATION OF AN ADAPTABLE 
SUBVERSION ARTIFICE 

A. PURPOSE OF DEMONSTRATION 

1. High Level Goals 

The purpose of this demonstration is to show that it is possible, and indeed 

relatively easy, to design and insert a compact and adaptable subversion artifice into an 

operating system. The key consideration here is that these two characteristics are 

typically mutually exclusive: adding flexibility to software generally results in bloated 

code rather than compact code. This demonstration focuses on the construction of the 

mechanism whereby a very compact artifice can be dynamically grown, essentially the 

“2-card loader” envisioned by many early security tiger teams. The end product is an 

artifice foundation or base that does not itself provide much functionality. Instead it 

provides a platform that may be used to implement a subversion of arbitrary complexity 

and sophistication. 

Although the actual demonstration is implemented on a single platform, the 

concepts behind the design of the subversion are platform independent and could be 

implemented on any common operating system that has not been designed using high 

assurance methodologies. 

While it is valuable to understand how easy or difficult detection of an artifice is, 

obfuscation is specifically not an objective of this demonstration. There are numerous 

ways to try to actively hide the existence of an artifice. One of the points of this thesis is 

that, even without the attempt to disguise an artifice, it is still nearly impossible to detect 

due to its inherent characteristics. 

2. Assumptions 

The assumption of this demonstration is that the subversion in question is being 

carried out by an insider: someone with access to the code who is responsible for 

legitimate portions of the code. The real risks are not, however, limited in by this 

assumption. Whereas the demonstration assumes knowledge of the source code and the 
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ability to insert modified code at a specific point in the development lifecycle, Myers 

points out that risks are present at every stage of the system lifecycle, including design, 

development, distribution, maintenance, etc. While having access to the internals of the 

system is an advantage, there are many examples of malicious software that have found a 

way to make use of undocumented aspects of system internals. These examples include 

kernel-level root kits, which can produce results similar to this demonstration, as well as 

exploits for discovered vulnerabilities. These examples do show that having source code 

is not necessary (and sometimes not even sufficient!) for understanding the workings of 

the system. 

There are several technical assumptions that were made in the design of this 

demonstration: 

• The target for the subversion is based upon Windows NT technology, 

which means that the actual target may be Windows NT, Windows 2000, 

Windows XP, or Windows XP Embedded. 

• The subversion will make use of network connectivity, and the target will 

have a standard networking mechanism. 

• The memory of the target should be sufficiently unconstrained to allow for 

the storage of small amounts of assembly code. This does not assume that 

storage is infinite, but that a relatively small and straightforward program 

should be supportable. 

• The system can be made to allow the modification of memory that 

contains other kernel executables. 

• The target system will use the Intel x86 machine instruction set. Note that 

this is not a design limitation: machine code for the loaded artifice could 

be designed to meet the requirements of any chip. 

3. Requirements 

Several requirements arise out of the definition of an effective subversion 

mechanism by Myers, as described above: 
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• Compactness 

• Possession of a unique trigger 

• Untraceability 

• Revision and installation independence 

• Adaptability 

The primary requirements for this demonstration are the characteristics of 

compactness, possession of a unique trigger, and adaptability. In addition to the 

requirements outlined by Myers, the author added several additional requirements to 

increase usability and to support the fact that the artifice is programmable. These include: 

• Integrity verification 

• Feedback 

• Session tracking 

• Hard reset 

 

a. Compactness 

The property of compactness can be indicated roughly by the number of 

lines of code added to the system. The subversion artifice demonstrated in the Anderson 

thesis was 11 lines of code; this demonstration must be within the same order of 

magnitude. 

b. Possession of a Unique Trigger 

The possession of a unique trigger is required since the user needs to be 

able to turn the artifice on and off, and it is desired that such activation and de-activation 

not be likely to be performed by accident. 
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c. Untraceability 

The desire that the artifice be untraceable is related to the desire of the 

attacker to avoid detection. While a flexible artifice might be programmed to take actions 

that could be traced, the fixed component of the artifice should avoid such actions. 

d. Revision and Installation Independence 

In order to maximize the effective lifetime of the artifice within the 

system, it should be placed in a location that is unlikely to be revised. Likewise, to ensure 

the highest probability of being effective at the target site, it should be placed in a 

location that has a high probability of being a part of the target installation. 

e. Adapatability 

Since this demonstration produces only the base artifice, the artifice 

should provide some amount of primary memory for the use of holding code that allows 

the execution of that code. This is the fundamental measure of adaptability, that the 

artifice builder may expand upon the base element to create an arbitrarily large and 

sophisticated subversion. The amount of memory provided for the user should be 

sufficiently large to enable arbitrary expansion. For example, in order for the user to build 

a larger artifice elsewhere in memory, a certain amount of bootstrap code is necessary to 

find that area and load the necessary code. The artifice should at a minimum provide 

sufficient space for such code. In practice, this means that there is enough free memory in 

the base element to hold the code that discovers or requests additional memory and 

manages that additional memory. 

f. Integrity Verification 

Given that the information coming into the system will likely be coming 

through an imperfect channel, it is desirable that the integrity of the content be verified in 

order to increase the usability of the artifice and to reduce the chance of inadvertent 

failure of the target system. Integrity checking also contributes to the ability of the 

artifice to avoid detection, since a failure condition would potentially provide the victim 

with an obvious signal that something is amiss. 
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g. Feedback 

In order to improve the usability of the artifice, the artifice base should 

support communication back to the subverter. The subverter should be able to customize 

and program the content of this communication, but the artifice base should supply this 

service to its customers. Note that this requirement is not necessary for a subversion 

effort to succeed. It merely provides a level of usability to the attacker, which is 

particularly useful for demonstration purposes, both in order to produce an illustrative 

demonstration and to support debugging 

h. Session Tracking 

Also, to improve the usability of the system if there are going to be several 

attackers working in concert, the system should provide a service that keeps track of who 

is using the system in order to reduce conflicts. The session tracking may be used to 

ensure that only one user uses the artifice at a time. Although the session ID must be 

known by the attacker, it is not otherwise intended to support authentication. 

i. Hard Reset 

For reasons related to the preservation of integrity and the tracking of user sessions, the 

artifice should have hard reset functionality in the case of an emergency. This ensures 

that if the artifice enters a state that appears problematic, such as being unreachable or not 

displaying the expected behavior, it can be reset to its original state to ensure accessibility 

B. DESIGN DECISIONS 

In order to conduct the bootstrap transition, from a “toe-hold” to an artifice that 

creates the desired subversion of the operating system, it is necessary to transmit the new 

code into the system. The options available for establishing a communication channel are 

limited only by the imagination. Virtually any input mechanism may be used, such as the 

keyboard, the network, serial ports, etc. Messages could be hidden in files that are read 

by the system, such as documents, graphics files, or even music files, and these files 

could enter the system via a variety of methods, including email, web downloads, FTP 

file transfers, peer-to-peer file sharing, or even via the physical transfer of removable 

media. For this demonstration, the network has been chosen for simplicity as well as for 
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its increasing ubiquity. It should be noted that although two-way traffic is assumed to be 

possible for convenience sake, the design of the artifice does not rely on the use of 

outbound traffic. Given that the initial bootstrap portion of the artifice is a part of the 

networking code, it was decided that the base portion of any artifice should include 

networking services that may be used in the design of more sophisticated artifices. There 

were a couple of guiding principles that drove the design of the base portion of the 

artifice: 

• The base element of the artifice should be involved with any use of the 

network that is programmed into more complex elements of the artifice. 

• Of the base element of the artifice, the “toe-hold” should be as compact as 

possible. 

In order to keep the subversion artifice compact, yet also provide services that 

allow one to easily develop a custom subversion, a bootstrap-like mechanism has been 

adopted. The primary purpose of the first part of the bootstrap mechanism is simply to 

provide a “toe-hold,” a means by which something may be inserted into the system. This 

analogous to the traditional 2-card loader of the mainframe era, in which the first two 

punch cards inserted contained the code necessary to assist in loading the subsequent 

cards. The purpose of the second stage is to assist the building of the third stage. The 

third and final stage of the base artifice expands the set of services that are provided to 

someone constructing a custom-build artifice. 

This expansion incorporates generic mechanisms that would be used by anyone 

wanting to load their own artifice. This bootstrap mechanism confers adaptability due to 

the fact that only the toehold must be determined at the time of insertion. While the base 

artifice gives the attacker the ability to load and execute arbitrary code, the second and 

third stages of the artifice are themselves adaptable. If, for example, the attacker 

determines that feedback from the subverted system is not important, but that another 

feature is important for the base artifice (or perhaps that there is not even a need for the 

features of the base artifice), such changes can be made after the toe hold is inserted and 

just before the modified code is shipped to the system through the toe hold. 
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The inspiration for the design borrows from the techniques that have been 

developed by the "blackhat" community. Techniques for exploiting buffer overflow 

errors are widely available, and in some cases have grown fairly sophisticated. Buffer 

overflow exploits take advantage of the fact that arbitrary data can be placed into memory 

and then executed. The design of the subversion in its simplest form replicates this 

behavior. While the subversion artifice will be explicit, it should be noted that a similar 

effect may be achieved by intentionally creating code that is vulnerable to a buffer 

overflow. It is important to point out the differences between the explicitly coded artifice 

and a buffer overflow vulnerability. A buffer overflow vulnerability is by its nature less 

noticeable than explicit lines of code since there are no lines of code directly associated 

with the vulnerability: the vulnerability is created by the absence of sufficient error 

checking. This is not to say that just because an artifice has specific lines of code 

associated with it that it is obvious, however, given the amount of code that exists in a 

system and the difficulty of comprehending the function of each line of code. 

On the other hand, a buffer overflow may be observed fairly easily even without 

source code by observing the behavior of the system. A subversion artifice is generally 

implemented with a trigger mechanism, so that only when a specific input key or 

signature is delivered will the artifice take action. Therefore, testing for such a trigger via 

trial and error will be nearly impossible. Additionally, although not addressed by this 

thesis, it is conceivable that an explicit artifice trigger could be obscured in the same 

fashion as a buffer overflow (not represented by individual lines of code) while retaining 

possession of a trigger key. One other advantage of the explicit artifice is that it tends to 

be more user-friendly. It can be designed to provide a user with predictable behavior and 

not impact the system it is on, whereas exploiting a true buffer overflow usually means 

damaging some part of the running state, which is often more difficult to recover from 

cleanly. 

1. TCP/IP Versus NDIS 

In deciding exactly where to insert the artifice into the networking modules of the 

operating system, the initial inclination was to use the very low layers that are close to 

device drivers. In Windows systems, there is a layer called the Network Device Interface 
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Specification (NDIS), which is designed to provide a standardized layer between the 

device drivers that power the networking hardware and the operating system. The initial 

reasoning for this decision was that it would result in an artifice that could operate in a 

protocol independent manner, yet not be dependent upon the particular hardware used, as 

a device driver would be. Although inserting an artifice in a device driver itself has some 

implementation advantages, such as generally less oversight and testing and ease of 

introduction into the kernel due to an overly-trusting driver model, it was not considered 

due to the more important goal of reaching installation independence. 

The final decision was to use the TCP/IP stack rather than the NDIS layer. 

Although NDIS is protocol independent, the use of TCP/IP is so prevalent that the 

advantage of protocol independence is negligible. Also, the TCP/IP stack is more static 

that the NDIS layer. Whereas the NDIS version number has changed with virtually every 

new operating system version released, the TCP/IP functionality has remained relatively 

static. Thus, using TCP/IP contributes to the goal of revision independence. The 

overriding factor, however, was based upon the desire to keep the artifice both compact 

and usable. Putting the code within NDIS would have required the addition of some kind 

of checksum within the artifice to verify the integrity of incoming information. Since the 

incoming traffic would be code (due to the need to grow the artifice), unverified data 

could have severe consequences, likely crashing and losing control of the target. By using 

a UDP packet, the artifice is able to leverage the checksum performed to know that the 

packet has not been corrupted in transit. An additional feature of the UDP checksum 

operation is that a packet with a bad checksum is silently dropped, and a specific bad 

checksum could potentially be used as a trigger. This has the effect of being able to 

communicate with the artifice in a way that is resistant to both testing and auditing. 

2. Network Stack Visibility Considerations 

Hiding its existence was not an explicit goal of the artifice. Nonetheless, questions 

that seek to understand whether the artifice would really be found are certainly of interest 

and pertinent to the topic. Placing the artifice in the networking stack was largely done 

because it was easy: since the decision was made to transmit the artifice over the 
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network, subverting the networking code was a natural decision. There are other 

questions that get more to the point: 

• Even if the victim knew that the artifice was in the networking code, 

would that really substantially change the difficulty of finding the artifice? 

• How difficult would it be to obscure the artifice, making it appear as 

though it belongs in the code? 

• Would it be possible to achieve the same effect (compromising the 

network stack) without putting the toe-hold there? 

One of the arguments for why the artifice “toe-hold” is difficult to detect depends 

upon size. The artifice is very small, whereas the amount of other code in the system is 

very large. While the code involved with networking is smaller than the code for the 

entire system, there is still a substantial amount of code. The ratio of the number of lines 

of code in the networking system to the number of lines of code associated with the toe-

hold is still massive. 

Additionally, no attempt was made to disguise the intent of the artifice code. 

There are likely many potential ways of doing so, such as following the naming 

conventions of the surrounding code and using variable names that might be confused 

with valid variables. Additionally, creating an artifice toe-hold by failing to validate 

input, for example, would make the artifice much more difficult to detect (similar to 

replicating a buffer overflow, as previously discussed). 

A similar effect as the toe-hold code could certainly be achieved by modifying 

code in another (non-networking) part of the system. For example, if the location of 

packets could be known or perhaps stored, it would be possible to use a frequently 

occurring system event to trigger a check of all packets in memory. Examples of 

frequently occurring functions include clock-based functions, disk access, and object 

manipulation. Such a design would rely on the fact that messages sent to the victim 

machine would not have to be reliable. If a given packet were not observed, another 

could be sent. In fact that attacker could repeat the necessary messages until they were all 

observed. 
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C. DETAILED DESCRIPTION OF ARTIFICE 

The structure of the base element of the subversion was broken into three stages, 

the “toe-hold” portion of the artifice, which is the initial phase, the loading of the artifice 

base, which is the second phase, and the completion of the construction of the artifice 

base, which is the third stage. Each stage provides a different set of capabilities. 

1. Stage 1 – Toe-hold 

The first stage of the artifice bootstrap (shown in Figure 2) is known as the “toe-

hold” code. The term bootstrapping refers to the act of “pulling oneself up by one’s 

bootstraps.” Although the imagery of the term suggests the impossible, in reality there is 

always some initial support needed in order to start a bootstrap, i.e. the toe-hold. In this 

demonstration, this is the code that is inserted into the source code sometime during the 

product lifecycle prior to the start of the attack. The toe-hold code provides three primary 

capabilities. First, it provides the memory that will be used by the artifice to store 

additional code and data. The amount of primary memory is sufficient to implement a 

small artifice or allow the construction of a larger artifice. Second, it supports a hard reset 

of the subversion mechanism back to a known initial state. This is done by loading a 

second stage that simply performs a “return” instruction. Third, it is able to detect and act 

upon specific signatures occurring in networking traffic sent by the subverter for the 

purpose of loading the code for the second stage or jumping to the start of the code for 

the second stage. Stage 2 code must fit in a single packet. 
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Figure 2.   Stage 1 Logical Flow 

 

The artifice toe-hold code consists of several small elements that are added to the 

UDP code. These include: 

• A global array that provides limited storage for the artifice base and for a 

small amount of additional subversion code. 

• A unique load key that triggers the loading of the packet contents into the 

code array. 

• A unique start key that triggers the point of execution to jump to the code 

in the code array. 

• A small amount of logic that occurs after the UDP code has established 

that the packet contains a bad checksum value. This logic, based upon the 

existence of one of the two unique keys, either loads the packet contents 
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into the start of the array or starts executing the code at the start of the 

array. 

The implemented toe-hold code consists of 6 lines of executable C code added to 

the UDP-handling routines. The six executable lines of code implement the logic that 

checks for the two unique keys, and either loads the contents into the array or calls the 

array as though it were a function. In addition to the 6 lines, there are two lines used for 

declarations: one declares an array that reserves the primary buffer space for the artifice, 

and the second is a type definition that allows the pointer to the array to be treated as a 

function. 

The purpose of the toe-hold code is to load and start the second stage of the 

bootstrap code. This is analogous to a traditional hardwired bootstrap loader. Whereas the 

historical 2-card loader required that the bootstrap code be stored in the first two cards, 

this bootstrapped artifice requires that the second stage code be contained in a single 

packet. The two unique keys that identify a packet as being intended for the artifice could 

of course coincide with a packet that has legitimately computed these same checksums. 

Indeed, if one assumes that any given packet will randomly generate a 16-bit checksum, 

then it will take only an average of 16,384 UDP packets before one of the two triggers is 

duplicated. There are two mitigating factors, however. First, after artifice code is loaded, 

any packet indicating that the artifice code should be executed will be checked by the 

artifice code to ensure that the correct session key is present in the incoming packet. If 

the 16-bit session key provided in the packet does not match the current session key, no 

action is taken. Second, a packet is checked for the particular unique checksum only 

when the checksum fails. Assuming that packets are corrupted in transit rarely, let us say 

only one in 10,000 packets and that UDP traffic represents some fraction of traffic 

observed such as 25%, that means that an accidental activation of the artifice to load the 

contents of the packet would occur on average about once every 1,310,000,000 packets. 

If the attacker desired to have less chance of an accidental reset of the loaded artifice, she 

could certainly modify the toehold code to include a check on a later segment of the 

incoming packet as is done in the checking for the session key. 
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The toe-hold code is the only “hard-coded” portion of the artifice. All further 

steps are completely flexible. Although, for example, Stage 2 may be implemented to 

accept exactly 4 packets in order to load Stage 3, that implementation is arbitrary and can 

be replaced if the design of Stage 3 changes. If, for example, the subverter has a very 

simple exploit that does not require the services of the artifice base, the exploit may be 

loaded directly into the primary buffer. On the other hand, if more features are desired for 

the artifice base code, Stage 2 may be written to load Stage 3 with 8 packets. 

Because the toe-hold is hard-coded, it is the component that must provide the 

hard-reset functionality. In order for the subverter to conduct a hard reset, she merely has 

to send a packet with the unique load key and contents that indicate that the execution, if 

it enters the primary buffer, should simply return. 

In addition to restoring the system to a known state, the subverter may also want 

to cover any traces of activity. If the only evidence of activity is the initial portion of the 

primary buffer that may be rewritten with the contents of a single packet, the subverter 

may only need to send the one hard reset packet to cover all evidence of activity. Should 

the subverter wish to overwrite the entire primary buffer, she may need to send three 

packets: one containing code that will overwrite the entire buffer as desired, a second to 

execute that code, and a third to overwrite the just executed code. Of course, if the 

subverter has modified areas of the system beyond the primary buffer, he would need to 

clean up those other areas prior to overwriting the primary buffer. 

2. Stage 2 – Loading of Artifice Base 

The second stage of the bootstrap process (shown in Figure 3) consists of the code 

loaded by the first stage. The purpose of the second stage code is to load the last stage of 

the artifice base. 
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Figure 3.   Stage 2 Logical Flow 

 

Whereas the code for the second stage of the artifice base must fit within a single 

packet, the code for the third stage may require multiple packets. Thus the second stage 

of the bootstrap process must manage the loading of multiple packets. In order to do this, 

the code keeps track of which portions of Stage 3 code have been loaded and which ones 

remain. One additional feature of the second stage is that it allows the subverter who 

initiates the loading of the second stage to use a unique session key, so that attempts by 
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multiple subverters to interact with the artifice concurrently will not lead to system 

failure. 

The second-stage code consists of a couple of elements that facilitate the loading 

of the third stage, including: 

• A variable that identifies the current session. 

• An array of bits that indicate whether the associated part of Stage three 

code has yet been loaded. 

• Logic that ensures that the incoming packet matches the current session. 

• Logic that identifies which part of the Stage three code the current packet 

represents, loads the contents of the packet into the correct location, and 

registers that the portion in question has been loaded. 

• Logic that checks to see whether the loading of the third stage is complete, 

and if it is, it sets a new session ID, and modifies the second stage code so 

that the next packet will be processed by the Stage three code.  

The actual code for the second stage is similar to the “shellcode” or “asmcode” 

that is used in buffer overflow exploits. It is passed into the system as raw opcodes, and is 

designed to be position independent since the actual location of the code may be 

unpredictable. 

The third stage will be loaded by the second stage using a fixed number of 

packets, each with a code payload of a fixed size. Thus, the packets may arrive in any 

order. If any packets fail to arrive, they may be safely sent again until all the packets are 

successfully received. 

The inclusion of Stage 2 is optional, depending upon: the size of the Stage 3 code, 

the amount of code that the subverter wishes to send in each packet, and the maximum 

amount of data that may be sent in a packet. Because the incoming packets are one of the 

few indications to the victim that subversion is taking place, the subverter may elect to 

restrict himself to smaller packets in order to reduce the likelihood of detection (assuming 
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the subverter believes that more numerous smaller packets are less obvious than a single 

larger packet). 

3. Stage 3 – Completion of Artifice Base 

The third stage of the bootstrap (shown in Figure 4) begins once the code 

delivered to the second stage has been completely loaded. This code is known as the 

“artifice base” and provides three main features. First, it supports the loading of 

additional code into a limited area of memory. Second, it supports the assignment of 

multiple triggers to different points of execution, so that specific code may be activated 

as desired via the network. Third, it provides the capability for feedback back to the 

subverter via the network to let the subverter know the status of the artifice and any 

additional information that the artifice may be programmed to provide. 
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Figure 4.   Stage 3 Logical Flow 

 

Like the second stage code, the third stage code is composed of raw opcode 

instructions, and is position independent. 

The artifice base supports four basic functions: loading of code, setting of code 

triggers, executing code, and providing feedback. The loading function allows code sent 

to the artifice to be copied to a specified location within the primary buffer space. The 

trigger setting function allows a numbered trigger to be associated with a specific section 

of code. Also, before associating a trigger number with the starting address of the loaded 
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code, the function uses a checksum to verify the integrity of the loaded block of code. 

The function to execute code simply passes the point of execution to the correct location 

based upon the specified trigger. The function to provide feedback may be triggered 

independently, or it may be specified as an option in conjunction with any other 

command. Each of these functions may be “called” by sending an appropriately 

formatted packet to the artifice. Using this foundation, the potential subverter may 

construct his own arbitrary set of functions. 

4. Packet Interface Specifications 

a. Hard-Coded Load Packet 

Figure 5 below shows the format of the UDP header that should be used to 

load the artifice buffer with code. This is used in Stage 1 to load Stage 2 code, and to 

conduct a hard reset. 

Figure 5.   UDP Header Specification for Load Packet 

 

When the UDP checksum field contains the value of 0x3121 (and that 

value is an incorrect checksum for the given packet), then the payload of the UDP packet 

is loaded directly into the primary receive buffer. In the rare situation where 0x3121 is 

actually the correct checksum for the packet, the user would have to modify the packet in 

some way in order to get the payload to load correctly. The entire payload is copied into 

the buffer, as indicated by the UDP Length. No error checking occurs with regard to the 

length: since the primary buffer allocated by the initial artifice code is designed to be 

larger than the maximum payload size, critical data should not be overwritten. 

 

0 16 32

Source Port Destination Port 

UDP Length UDP Checksum = 0x3121 

Payload 



 37 

b. Hard-coded Start Packet 

The following diagram shows the format of the UDP header that should be 

used to jump the point of execution into the primary buffer. This format is used for every 

packet sent to the artifice once code has been loaded into the primary buffer. In later 

stages, the UDP header remains the same, while the payload of the UDP buffer is 

formatted in accordance with the particular artifice code being executed. 

Figure 6.   UDP Header Specification for Start Packet 

 

When the UDP checksum field contains the value of 0xE417 (and that 

value is an incorrect checksum for the given packet), then a function call is made to the 

address of the start of the primary buffer. Although the primary buffer is declared as an 

array, the address of the array is copied into a variable that represents a function pointer. 

The manufactured function receives a single parameter of type void*, which is used to 

pass the starting address of the UDP packet into the artifice code in the primary buffer. 

This allows the artifice code within the primary buffer to have access to the entire UDP 

packet, and to use data within the packet as its own parameters. 

c. Artifice Base – General Functions 

The artifice base provides several preset functions, but it also provides the 

user the ability to create his own functions that leverage the design of the artifice base. 

Like the artifice base itself, all functions loaded into the primary memory must adhere to 

a variety of restrictions, such as position independence and the preservation of particular 

registers. Position independence is crucial since there is no linking being performed by 

the system and no guarantee about the location of the primary memory. Sections of code 

may be linked together explicitly by the user, whether they are contiguous or in different 
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parts of memory. With regard to registers, the artifice base uses as a convention the EBX 

register to refer to its own data structures. All local variables are stored at relative offsets 

to the EBX register, which is loaded when the artifice base initializes. Users who wish to 

use the artifice base convention may do so; alternatively, they can use their own 

convention. If they do use the EBX register, they should also reset it to its original value 

once they finish using it to ensure that the artifice base may correctly reference its local 

variables. 

The functions supported by the artifice base, both the built-in functions 

and the user defined functions, are available once the Artifice Base has been loaded. All 

supported functions require that the UDP header be formatted to the Start Packet 

specification. The fields that are common across all functions are shown in Figure 7: 

Figure 7.   General Artifice Parameter Specification for Functions 

 

The session identification field is a unique key that must match the session 

key currently defined in the artifice. This is used for all functions supported by the 

artifice base. The session key is stored as a variable within the artifice base, so the user is 

free to set up any type of coordination system he deems appropriate. For example, 

different users can be given different keys and instructed to change the session key when 

they want to transfer control of the artifice to another user. Or the user can establish two 

keys, one indicating that the artifice is currently being used, and another indicating that it 

is idle. The convention can be that an individual switches the session key to the in-use 

key prior to taking any action, and then switches it back once the action is completed. 

The feedback (FB) field indicates whether the user wants feedback to be 

sent out to the network after a specific function has been completed. Because feedback 
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could be desired in conjunction with any function, the artifice base routine first executes 

the primary function, and then automatically executes the feedback function provided that 

the feedback flag has been set. Only the leftmost bit in the feedback field is used as the 

flag: a zero indicates that feedback should not be sent, a one indicates that feedback 

should be sent. 

The function field (labeled as Fnc) is used to specify which function 

should be run. There are 16 possible trigger values, with 0, 1, and 2 pre-assigned to the 

standard functions of sending feedback, loading code, and setting new triggers. The 

remaining 13 values may be set to user-loaded code. 

d. Artifice Base – Load Data Function 

This function supports the loading of data into a specified location within 

the primary buffer. This function is available once the Artifice Base has been loaded, and 

it is reached by formatting the UDP header to the Start Packet specification. The fields 

that are needed in order to load data are specified in the header format diagram: 

Figure 8.   Artifice Parameter Specification for Load Data Function 

 

The session identification field is a unique key that must match the session 

key currently defined in the artifice. The feedback (FB) field indicates whether the user 

wants feedback to be sent out to the network after the loading of data has been 

completed. Only the leftmost bit in the field is used: a zero indicates that feedback should 

not be sent, a one indicates that feedback should be sent. The load function is assigned 

the index of 1, so the function field (labeled as Fnc) must be 0x01. The offset / jump 

field indicates where the data should be loaded. An offset of 0 indicates that the next byte 

following the artifice base code should be used for the first byte of data. The length field 
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indicates the number of bytes of data that should be copied. Neither negative offsets nor 

offsets that would result in code being loaded past the end of the primary buffer should be 

used; there is no error checking for these conditions. The data section of the packet starts 

at byte 10, and its size is specified by the length field. 

e. Artifice Base – Set Trigger Function 

This function supports the setting of a trigger for some portion of loaded 

code, thereby effectively creating a new function. This function is available once the 

Artifice Base has been loaded, and it is reached by formatting the UDP header to the Start 

Packet specification. The fields that are needed in order to load data are specified in the 

header format diagram: 

Figure 9.   Artifice Parameter Specification for Set Trigger Function  

 

The session identification field is a unique key that must match the session 

key currently defined in the artifice. The feedback (FB) field indicates whether the user 

wants feedback to be sent out to the network after the trigger has been set. Only the 

leftmost bit in the field is used: a zero indicates that feedback should not be sent, a one 

indicates that feedback should be sent. The set trigger function is assigned the index of 2, 

so the function field (labeled as Fnc) must be 0x02. The offset / jump field indicates to 

what address the point of execution should jump when the trigger is specified in a future 

packet. For example, suppose that a trigger is set with a trigger of 8 and an associated 

offset is 22. When a future packet is sent that specifies 8 as the function number, then the 

point of execution will jump to offset 22. The length and checksum fields are used to 

ensure the integrity of the code associated with a trigger prior to the trigger being set, 

which can help to prevent a loss of control of the point of execution. The checksum fields 
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(length and checksum) are design placeholders, and are not actually used in the 

implemented demonstration. 

f. Artifice Base – Feedback Function 

This function supports the sending of feedback out to the network. This 

function is available once the Artifice Base has been loaded, and it is reached by 

formatting the UDP header to the Start Packet specification. The fields that are needed in 

order to load data are specified in the header format diagram: 

Figure 10.   Artifice Parameter Specification for Feedback Function 

 

The session identification field is a unique key that must match the session 

key currently defined in the artifice. The feedback (FB) field must be 0x08, indicating 

that the user wants feedback to be sent out to the network. The 0x08 represents the 

setting of the leftmost bit to 1. The feedback function is actually a non-operational 

function; when no operation is combined with the optional feedback feature that is a part 

of any command, the result is the sending of feedback. Thus the function field (labeled as 

Fnc) must be 0x00 since the 0 function does nothing. The actual feedback that is sent 

depends upon variables that are located in memory within the primary buffer. These 

variables, which store the source and destination addresses as well as the packet payload, 

may be set by the user programmatically. Since the feedback function, when it is flagged, 

always executes immediately after the primary function being triggered, it is possible to 

program the primary function to store its results in the feedback buffer, which will be sent 

when the primary function completes. 
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IV. ANALYSIS 

A. WORK FACTOR 

It would seem intuitive that the most potent types of attacks against information 

systems – the types of attacks that would be employed by professionals – would require 

the greatest amount of effort and skill, whereas the least potent types of attacks would 

require the least amount of effort and skill. In fact, such a straightforward correlation 

does not exist. For example, a cursory review of the vulnerabilities of a variety of 

systems and applications show that there are frequently exploits that are able to achieve 

only limited denials of service, yet are quite difficult to carry out. Conversely, writing a 

script that erases a hard drive on many UNIX systems (‘rm –rf /’) and giving it an 

attractive name could make a very potent but trivial to produce Trojan Horse. Another 

factor that makes correlation difficult is the fact that, with information systems, attacks 

can be automated. Thus, only one person needs to develop, program, and release an 

attack, after which executing the attack becomes significantly easier. 

Indeed, in many respects, the most potent types of attacks are technically much 

easier to construct than less potent attacks. It is illustrative to compare the adaptable trap 

door-based subversion attack with a buffer-overflow penetration attack since there are so 

many similarities between them. While both need to ensure that the code they import is 

position independent, the buffer-overflow exploiter also needs to ensure that there are no 

bytes in the exploit code that are zero, since that would indicate the end of a buffer and 

therefore would not correctly trigger the buffer overflow. Also, since a buffer overflow 

typically overwrites an area that is in use (such as the stack), the exploit writer must also 

take care to ensure that her actions do not destabilize the system. Additionally, because of 

the many auditing mechanisms that could potentially be triggered by a penetration attack, 

implementing a penetration attack in a manner that avoids detection is much more 

difficult. In contrast, a trap door effectively operates as the operating system, making the 

triggering of auditable events avoidable. Another issue that makes penetration attacks 

more technically challenging is that a high level of privilege over the system is not a 

given: often an attacker must figure out how to escalate privileges in addition to gaining 
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initial access, which further complicates the attack as well as attempts to remain 

undetected. 

Although subversion in many respects is technically easier than penetration, it 

does have some properties that make it more difficult to implement than a penetration 

attack. Primarily, subversion by definition requires a different attack vector than 

penetration. Penetration can occur at any time during the operation of a system, whereas 

subversion must use an attack vector that is related to the creation or maintenance of a 

system. Necessarily, a subverter must have a higher level of knowledge about how the 

system is developed, distributed, or maintained than an attacker using penetration. The 

attack vector for subversion is qualitatively different, requiring either some type of social 

engineering or meta-penetration, such as penetration of a development or deployment 

system, in order to affect the system it is supporting. While the skills required for 

subverting a system are different in quality, it would be presumptuous to conclude that 

such skills are more difficult to obtain or more difficult to effectively deploy. The fact 

that an organization attempting to conduct a subversion could use one party to design and 

create the artifice and another to insert it illustrates the potential ease with which an 

artifice could be inserted. 

 The construction of an adaptable subversion artifice is arguably technically more 

difficult than the design and construction of a fixed artifice. The primary reason for this is 

the addition of flexible code. The code that is used to bootstrap the system must be 

position-independent machine code, whereas a fixed artifice may be programmed with 

whatever high-level language is used to program the system. Also, while for a fixed 

artifice the artifice coder may take advantage of the knowledge of the linker to make 

reference to operating system variables and functions, any interfaces between the flexible 

exploit code and the operating system code must be discovered at runtime. Nevertheless, 

in the author’s judgment, the estimate posited by Myers that subversion is within the skill 

level of the average undergraduate computer science major is accurate (though a college 

education is certainly not necessary). Although the creation of this thesis and the 

associated demonstration lasted 9 months, the actual implementation of the artifice took 

only a couple of weeks. The most significant technical challenge of the project was 
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deciding what tools to use and becoming familiar with the tools and development 

environment. In this regard the effort was similar to many programming projects, where 

an unfamiliar development environment is generally a significant initial hurdle.  

B. IMPACT ON THREAT MODEL 

In 2000, the Office of the Assistant Secretary of Defense (Command, Control, 

Communications and Intelligence) OASD (C3I) published a report [OASD00] that 

outlined a set of recommendations intended to mitigate the insider threat to DoD 

information systems. The report defines “insider” and sets up a framework for 

understanding and analyzing the insider threat, and it divides its recommendations into 

short-term and long-term actions that should be taken to mitigate the risks. It is said that 

when producing software, it is very important to remove “bugs” early in the development 

process, preferably in the design phase, since it is many times cheaper to remove a bug at 

that point than once the bug has been written into the code. Risk mitigation has a similar 

characteristic in that a small misunderstanding of the extent of the threat can result in a 

tremendous amount of extra effort without a corresponding reduction of risk. 

In the framework section of the report, the threats from insiders are characterized. 

In particular, the report specifically addresses the potential threat from the vendors who 

supply COTS products to the DoD. While the report notes that little is known about the 

individual developers of such products and therefore no measure of trustworthiness can 

be attributed to them, the report downplays the feasibility of an individual developer 

acting on his potentially malicious intentions: 

…individual developers of COTS products who have malicious intentions 
would have an extraordinarily difficult task to target a particular customer 
because COTS products tend to be produced in large quantities and 
shipped to customers as an activity that is independent of the individual 
developer.  The developer with malicious intentions would have to deliver 
the same product to all customers while retaining the ability to isolate a 
particular customer for exploitation. 

The report does grant that COTS systems do contain errors and that it is extremely easy 

to demonstrate the ways in which such systems are insecure. Nevertheless, as explained 
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previously, there is a fundamental difference between a vulnerability caused by a bug and 

a vulnerability intentionally inserted as a trap door. 

 The task that the report dismisses as too difficult is precisely the task that this 

thesis proves is quite easy. The task is to create an adaptable trap door that can be safely 

inserted into every distributed copy of a system, since there is a vanishingly small chance 

that the artifice will be detected. This trap door can be selectively activated just for the 

particular target customer, and although the trap door is in every system, the exact 

capabilities desired for any particular target may be inserted into the particular target 

customer’s system at the time of activation. 

 The report does not explain in detail exactly how the attributes and assumptions 

spelled out in the framework led to the specific actions that were recommended. The 

flavor of the recommendations is, however, clear. Many of the recommendations focus 

on measures that overlook the underlying insecurity of systems, and instead focus on 

ways to append security. These additive tactics include using defense in depth, adding 

additional security tools, introducing additional layers of cryptography, increasing the 

number of attributes that are audited and measured, and attempting to detect and react to 

anomaly and misuse detection. One action item labeled “System security architecture” 

listed several important features of a secure system that warrant additional research, such 

as authentication, access control, system integrity, and a bi-directional trusted path, yet 

left out the concept of providing assurance for the system itself. Although such a property 

may be implied, the bullet stating that the system should “continuously check system 

integrity, to prevent violations of integrity caused by … malevolent software…” seems to 

indicate that a high-assurance system is not being envisioned. 

 The report does make one recommendation that pertains directly to potentially 

subverted systems. It identifies that the acquisition process needs to be re-implemented to 

ensure that program managers evaluate their potential vulnerability to subversion. The 

ability to mitigate this threat, however, is misguided. For example, the report states “If 

the vulnerability would jeopardize a critical Defense capability, additional security would 

be instituted.” Of course, adding an additional security measure is ineffective against a 

subversion. Another statement from the report explains that “Action … is needed to 
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provide … an identification of otherwise obscured system vulnerabilities.” Given the 

known difficulty of detecting a subversion artifice, it is unclear how such vulnerabilities 

will be identified. 

 The report warns that the insider risk is real and significant, yet it overlooks the 

threat with the biggest potential and most catastrophic consequences. More alarmingly, it 

provides a large array of recommendations, with a typical recommended action being 

very costly, focused on detection, and completely impotent against subversion. Although 

prevention is traditionally more efficient than either detection and response, and it is 

incidentally the only way to guard against subversion, the report provides few 

recommendations with a preventative focus. 
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V. COUNTERING THE SUBVERSION THREAT 

A. THE PROBLEM OF IDENTIFYING AN ARTIFICE 

Determining whether software contains a trap door, although it sounds like a 

straightforward task, has been shown by history to be an exceedingly difficult task. 

Perhaps the most illustrative analogy is that finding a backdoor in software is equivalent 

to determining whether software contains a bug. In fact, it is most frequently software 

bugs that lead to system vulnerabilities, and a trap door could in fact be created by 

intentionally inserting a software bug. Anyone who is familiar with software and the 

propensity for software to contain bugs will realize that this is not a trivial problem to 

solve. 

One of the factors that make it difficult to find a trap door is simply that there is 

so much code to examine. The Microsoft NT operating system is estimated to have 

approximately 50 million lines of code. Additionally, in order to determine that there is 

no trap door it is not sufficient to find just one bug, it is necessary to find (and remove) 

every bug. Only one flaw need exist to create a trap door. Unfortunately, determining 

whether malicious code exists is more difficult than finding all the needles in the 

proverbial haystack, for often it is difficult to know what a needle looks like. 

One of the arguments made by the open-source community is that even with a 

great deal of code, it is possible to find most of the bugs in code since there are so many 

people examining the code. This idea is most famously expressed by Eric Raymond in his 

essay “The Cathedral and the Bazaar” [RAYM99] by the phrase, “Given enough 

eyeballs, all bugs are shallow.” He asserts that this property of software developed with 

the “bazaar” model of development makes this type of software less buggy, and also 

reduces the amount of time any bug would likely remain in the system. Open source 

advocates also claim that ‘Trojan horse’ code will not survive in open-source software 

due to these many eyeballs, often citing an incident in 1999 when the TCP-Wrappers 

source code was infected with a Trojan horse and quickly discovered by the open source 
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community. However, John Viega, co-author of “Building Secure Software”, points out 

that this was a glaringly obvious example of a Trojan horse [VIEG01]. 

Viega proposes that the often cited ‘many eyeballs’ phenomenon is a myth since 

it commonly doesn’t occur. In his estimation, just because many people may view some 

source code doesn’t mean that the security vulnerabilities will be uncovered. The reasons 

for this are many, including: most often the only eyeballs are from those who want to 

modify code (which may be very few to none), many coders don’t understand security 

issues and may not care about them, and many security issues are very subtle and are not 

readily apparent even for a motivated and educated observer. Viega cites a real-world 

example of how difficult it is to detect an exploitable flaw in software, even when the 

amount of code being examined is very small. The source code for wu-ftp, a very 

common and popular piece of software, has been open and publicly available for over a 

decade and has been examined extensively by security experts for security vulnerabilities. 

In fact, at one point a security tool had flagged part of the wu-ftd code as potentially 

vulnerable to a buffer overflow attack. Security experts who reviewed this particular 

portion of the code determined that the potential flaw could not be exploited. Despite this 

fact, more than a year after this code was reviewed, a buffer overflow exploit for this 

same code was published. This example shows that detecting a security vulnerability can 

be extremely difficult even when only a small amount of code needs to be analyzed. This 

property, when combined with the considerable amounts of code that make up even 

relatively simple systems, illustrates that finding a trap door inserted in the source code of 

a large and complex system is virtually impossible.  

The fact that the trap door need not even be in the source code at all makes the 

virtually impossible task of finding the door even more difficult. The trap door can be 

pre-compiled, provided there is a means of getting the compiled binary with the trap door 

code into the target system. Karger and Schell hypothesized an even more insidious 

scheme [KARG02]: store the directions for installing a trap door not in the source code, 

but in the compiler program that translates the source code into an executable file. In this 

case, there is no source code to review; one must ensure that the compiler program does 

not have the capability of installing a trap door. The Karger and Schell publication 
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inspired Ken Thompson to install such a self-compiling trap door into an early version of 

UNIX. The existence of this trap door was first revealed in 1984 during the speech Ken 

Thompson gave upon receiving the Turing Award [THOM84]. Ken Thompson spoke 

directly to the trust one can place in software: 

The moral is obvious. You can't trust code that you did not totally create 
yourself. (Especially code from companies that employ people like me.) 
No amount of source-level verification or scrutiny will protect you from 
using untrusted code. 

While inspection of source code alone will not provide protection from untrusted 

code, a methodology that provides a basis for trust in information systems does exist. 

This methodology, currently outlined in the Common Criteria [CC99], encompasses a 

number of principles, which, when applied in combination, provide evidence that a 

system provides a certain level of assurance. While source code verification alone cannot 

provide a reasonable level of certainty, a combination of measures may. For instance, the 

following list of measures provide a considerably higher level of assurance than source-

code verification alone: 

• Conducting background checks on programmers 

• Using only a custom-created compiler 

• Using a distribution method that ensures that the delivered product is the 

same as the developed product 

• Minimizing the security components of the system 

• Ensuring that the security components map precisely to a formally 

specified information flow policy 

• Organizing the security components in such a way that their functionality 

may be fully understood 

This last measure will be explored in detail in the next section. 
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B. THE ROLE OF MODULARITY, INFORMATION HIDING, AND 
LAYERING 

In dealing with the problem of subversion, the challenge is to be able to ascertain 

with certainty that no artifice has been inserted into the system. The only way to be 

certain that no artifice has been inserted into the system is to have a complete 

understanding of the system. Every line of code in the system and every possible 

interaction between different parts of the system code must be completely understood, 

and each line of code and interaction must ultimately support the specification around 

which the system is designed. If there are any deficiencies in this understanding, there is 

the possibility for the insertion of malicious code. 

Modularity, Information Hiding, and Layering are the tools used to gain a 

complete comprehension of large system. When faced with the possibility of subversion, 

the solution ultimately always boils down to the need for a complete understanding of the 

code. When the code is small enough, an understanding of the overall intent and 

mechanics of such code is possible. When the size of the code grows, however, the 

natural complexity of the system quickly makes it impossible for any one person to be 

able to understand the code in its entirety. The solution to this issue is to divide the code 

into separate parts, and to ensure that the parts are small enough that each part may be 

understood in its entirety. The issue at that point is that, since the parts interact with one 

another, one must have the ability to understand the interaction between parts. These 

parts are called modules, the interactions between the parts is known as layering, and a 

critical aspect of modules is that the internal state and contents of the modules must be 

hidden from other modules. Only by limiting the interactions between modules can we 

hope to have an understanding of the overall system behavior. 

1. Common Criteria Guidance  

The concepts of modularity, information hiding, and layering are at the 

foundation of good software engineering practices, so it is hardly surprising that the 

Common Criteria, the generally accepted guidelines for building high-assurance 

computer systems, requires the incorporation of the principles of modularity and layering 

[CC99]. 
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For example, the Common Criteria requires the use of modularity and layering in 

the internal structure of a system’s security functions at the highest levels of assurance 

(EAL5 through EAL7). For a system to meet EAL5 requirements, the security functions 

must be designed in a modular fashion in order to avoid “unnecessary interactions 

between the modules.” For a system to meet EAL6 requirements, it must (in addition to 

the modularity requirement) structure the security portion of the system in a layered 

fashion, minimizing the mutual interaction between the layers in the design and reducing 

circular dependencies. It must also reduce the complexity of the functions that are 

directly responsible for access control and/or information flow. In order for a system to 

meet the highest level of assurance requirements, EAL7, it must reduce the complexity of 

the access control and/or information flow functions (potentially by removing functions 

that are not critical to the enforcement of such functions) to the point that they can be 

fully analyzed. 

The Common Criteria does point out that the overall goal of these measures is to 

reduce the complexity of the functions being analyzed, which leads to an increase in 

comprehensibility and ultimately a higher level of assurance that the functions accurately 

and completely fulfill their requirements. However, it provides only a high level 

description of how these organizational principles can assist with this goal. This chapter 

will explain why these principles are critical to the construction of a high-assurance 

system, how they can assist in assuring that no artifice is inserted, and the desirable 

benefits a system may gain through the use of these principles, regardless of whether it is 

designed for high assurance. 

It is important to note that although the principles of modularity and layering are 

necessary for the construction of systems that provide the highest levels of assurance, 

they are by no means sufficient. Within the Common Criteria, for example, these 

principles apply only to a single family of requirements within the class of requirements 

for how a system is developed (the particular family is called “Target of Evaluation 

Security Functions (TSF) Internals”). Also within the class of development requirements 

are families of requirements that pertain to functional specification, high-level design, 

low-level design, security policy modeling, etc. In addition to requirements that pertain to 
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system development, the Common Criteria has additional classes of requirements for 

such areas as configuration management, delivery and operation, lifecycle support, and 

testing. Assurance cannot be provided in a piecemeal fashion: only when multiple 

attributes are considered in parallel can confidence be achieved. For example, even if the 

development of a system were conducted perfectly, the ability of a malicious entity to 

modify the system during delivery makes the assurance measures taken during 

development meaningless. This characteristic of assurance is reflected in the Common 

Criteria by the fact that an increase in overall assurance level can only be achieved by a 

combined increase in measures taken across requirement classes. Although modularity 

and layering can help to ensure that a system is not subverted during development, 

meaningful assurance is possible only through the application of a wide variety of 

measures throughout every stage in a system’s lifecycle. 

2. Modularity and Information Hiding 

Parnas produced the seminal works on the topics of modularity and information 

hiding thirty years ago [PARN72]. The original motivation behind the idea of modularity 

is related more to the efficient construction of software and the ability to redesign the 

software for other uses than for security. These goals, however, overlap with the goals 

implicit in creating high-assurance software. The overall goal is the same: rendering the 

system as a whole understandable.  

Parnas’s original description of a module is that of a work assignment: a task that 

could be given to an individual programmer who could grasp the entire scope of the 

assignment, produce the code for the module in question, and deliver the code for the 

module so that it could be recombined with other modules. This effort to efficiently 

divide the labor of those working on a large project ends up having a host of other 

benefits. 

In order to divide the work up in an efficient manner, the problem must be viewed 

in terms of what is likely to change frequently versus what is likely to remain constant. 

The aspects of a module that remain constant, Parnas concluded, should make up the 

interfaces between different modules. The aspects of the module that change frequently 

should be represented by the internal databases managed by the module. Thus, a 



 55 

programmer assigned to a module encodes the entire module to comply with a static 

interface knowing that the interface will be able to be used by modules written by other 

programmers. This way of designing a system has the effect of hiding the information 

internal to the module, which has additional advantages. Information hiding, for example, 

allows for the internal structure of a module to be revised without changing the overall 

capabilities of the system, and it also allows the module to be tested independently from 

any other modules. Arranging the modules into a hierarchy enables one to understand the 

relationship between modules, thereby ensuring that work is not duplicated between 

modules. It also allows a new programmer to understand the overall structure of the 

system. Thus, correctly decomposed, a system will have small modules, each of which is 

fully comprehensible by the person who programmed it. Also, the number of interactions 

between modules is significantly limited by the use of information hiding, enabling one 

to understand the overall behavior of the system more easily. 

These ideas have been so successful, in fact, that an entire generation of 

programming languages has been developed to support these ideas. The object-oriented 

approach is today seen as the standard way to develop software. Just because the tools are 

available, however, does not mean that the concepts will be adhered to. 

2. Layering 

Once a system has been decomposed into small enough pieces, the pieces—or 

modules—must then be combined together to form the entire system. Without 

interactivity among modules, the usefulness of the system would be indeed limited. 

Without a structure that defines the potential communication paths between modules, 

understanding the overall system would quickly become unmanageable. 

Dijkstra originally observed the utility of adhering to a strict program of 

structuring in the design of the THE system [DIJK68]. He observed that by breaking the 

system into small enough layers, and testing each individual layer with sufficient rigor to 

prove to oneself that the individual layer was correct, that it was possible via the 

transitive nature of the layers to prove the correct operation of the entire system. The 

THE system was composed of five layers. Each higher layer depended upon each of the 

lower layers. Dijkstra commented that the use of this layering was imperative to 
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constructing a system that could be totally understood. While many have commented that 

the system Dikstra built was relatively simple, and therefore may not apply to larger 

efforts, Dijkstra would have countered that a larger project would have even more of a 

need for correct structuring. 

One of the important characteristics of a layered structure is its ordering. While 

Dijkstra organized the THE system into a total ordering, other efforts have successfully 

used a partial ordering of modules. A layered structure implies that the layers upon which 

any given layer rests are independent of the higher layers: each layer is able to exist 

independently since it is the foundation for the next higher layer. The lack of upward 

dependencies reflected in this design is very difficult to achieve. In fact, even when 

efforts are made to limit the interactions among modules by organizing them into layers, 

these rules are regularly circumvented when the implementation is actually carried out. 

Perhaps the best example of circularity in the design of an operating system is illustrated 

by the common interaction between the virtual memory management system and the file 

system. In order for the virtual memory manager to swap the contents of memory to disk, 

it relies on the file system to provide the storage for these pages. In a symmetric fashion, 

in order for the file system to manipulate large files (larger than physical memory), it 

relies on the virtual memory manager to transparently handle the large files. Thus, a 

cyclical dependency between the two systems exists. 

It may not initially be apparent why this situation is problematic. One might even 

argue, for example, that such a design has the advantage of being more compact since 

code is being reused. However, the increased complexity that is created due to this design 

has a variety of characteristics that make it undesirable when understandability is a goal. 

One of the issues with cycles has to do with error states. With a circular dependency, an 

error state in one part of the system can propagate through the cycle and create an endless 

loop. An example of this issue appeared in the design of the auditing system for VAX 

VMM security kernel [SEID90]. 

Another issue with circular dependencies is that the modules that take part in 

creating the cycle can never be evaluated or tested independently. In effect, circularity 

spoils the advantages gained by the use of small information-hiding modules: to be able 
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to understand them completely, to be able to test them independently, to be able to 

modify the internal representation of modules without impacting the correctness of other 

modules. The cycle of dependencies creates a condition whereby all of the modules that 

are involved in the cycle effectively create one large module, which can therefore not be 

completely understood. One of the important properties of a well-structured system is 

that a subset of the system can be considered independently of the entire system, yet still 

be considered complete. 

Perhaps most importantly, the existence of cycles prohibits the applying of formal 

(i.e. mathematically-based) methods to assist with the understanding of the system. A 

system that contains cycles may never formally correspond to a higher-level mathematic 

description of a system due to the critical requirement for transitivity. Any logical system 

that mapped onto an implementation that contained cycles would be equal to the logically 

flawed application of circular reasoning. These principles inherent in a hierarchical 

design that preserve logical transitivity and the ability to have system subsets apply 

directly to the concept of a security kernel. 

While having a small security kernel is important, especially due to the costs 

associated with verification, there is still the need for additional security services outside 

of the kernel to create a usable system (such as the authorization system, a trusted path, 

etc.). These additional components in addition to the security kernel are known as the 

“trusted computing base” or TCB. Using a hierarchically-structured design allows these 

other components to interface with security kernel in a logically sound manner. Although 

these components may not correspond to the formal specifications, they may still be 

designed using the same principles and techniques. Without a hierarchical design, the 

interactions between these modules and the security kernel could be complex and likely 

poorly understood. 

3. Applying the Principles 

Applying the concepts of modularity, information hiding, and layering is not 

always easy or obvious, especially when the areas of interest are inherently complex, 

such as the kernel of an operating system. Many consider such efforts to be wasted, since 

the design decisions are difficult and perhaps not intuitive [LAMP83]. Nevertheless, 
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many techniques have been developed that permit the application of these principles, and 

they have been successful conceptually in several projects despite their lack of adoption 

in the marketplace. 

The fundamental intellectual work done on applying these principles to operating 

system design was performed by Janson in his doctoral thesis [JANS76]. His ideas were 

later adopted in the redesign of the Multics kernel, in the creation of a Virtual-Machine 

Monitor security kernel for the VAX platform, and in the GEMSOS kernel. Janson’s 

thesis describes the construction of a virtual memory mechanism using a strict partial 

ordering among the modules, and the concept of type extension to enforce the 

information hiding aspects of the modules. 

The Janson thesis describes the connections between modules by characterizing 

the different types of dependencies that may exist. A dependency is considered to exist 

between two modules, say A and B, only if the correct behavior of A depends upon the 

behavior of B. To create a partial ordering, all upward dependencies must be eliminated. 

There are a limited number of inter-modular dependencies that may occur between 

modules: 

1. Message Only – Module A sends a message to module B, does not abandon 

control, and does not expect a response. 

2. Quiescent Signaling – Module A sends a message to module B, abandons 

control, and does not expect a response (and therefore is in a quiescent state). 

3. Non-Quiescent Signaling – Module A sends a message to module B, abandons 

control, but does expect a response (and therefore is in a non-quiescent state). 

4. Quiescent Transfer of Control – Module A transfers control to module B, and 

does not expect a response (and therefore is in a quiescent state). 

5. Non-Quiescent Transfer of Control – Module A transfers control to module B, 

but does expect a response (and therefore is in a non-quiescent state). 

6. Call – Module A explicitly calls module B and awaits a response (and therefore 

is in a non-quiescent state). 
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As defined by Janson, the interactions described by points 3, 5, and 6 are 

“invocations,” whereas points 1,2, and 4 are “notifications.” Invoking another module 

implies a dependency, since a response is always expected. A compiler can automatically 

identify dependencies created by upward calls. Unfortunately, a compiler can not 

necessarily prevent upward invocations since differentiating between 2 and 3 or between 

4 and 5 requires understanding the intent of the module, i.e. knowing whether the module 

remains in a quiescent state or expects a response. 

Janson describes the second form of dependency as originating from the 

information that is passed between modules when an interaction takes place. Parameters 

that are passed can either be values, or they can be references. In the case of passing a 

value, a module may be dependant upon another module if it trusts that the values passed 

by that module are a particular type or range without checking the value. Object-

orientation is generally unhelpful in identifying value parameters. While languages may 

be able to provide some help with checking for the type of values, they do not assist with 

the checking of ranges. Object-orientation is generally more helpful for the control of 

references. Since the compiler understands the hierarchy of the modules, it can ensure 

that a reference to a “higher-level” module can never be acted upon. While the higher-

level objects may be referred to, this is done only in terms of the reference as a value: the 

object itself cannot be accessed. 

Invocations and notifications are categorized as component dependencies. In total, 

there are five types of dependencies described: 

1. Component Dependencies—a module depends upon its own components, 

which are other modules. 

2. Map Dependencies—a module must keep track of the objects that are its 

components, but the maps that allow the component objects to be tracked must 

be kept in some kind of information store. Thus the module is dependant upon 

the objects providing storage for the mappings. 
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3. Program Storage Dependencies—every object that may be called has some 

kind of code associated with it, and that code must be stored in some object in 

order for it to be executed. 

4. Address Space Dependencies—the objects that make up the execution 

environment of a module need address space in order to be executable.  Thus it 

is dependent upon the information container that provides this address space. 

5. Interpreter Dependencies—any module has code that needs to be executed by a 

processor, and is thus dependant upon the module that provides the notion of a 

processor. Since every object does not have an individual physical processor, it 

is dependant upon the module that provides the virtual processor. 

Based upon the research done in the Multics redesign project [SCHR77], it was 

concluded that the circular dependencies created due to the mapping, program storage, 

and address space are easy to break once their contingencies are recognized. The primary 

principle used to solve these issues is the use of core segments: areas of memory that use 

a fixed amount of space and are permanently stored in main memory. The most complex 

problems arise from the handling of exceptions, since they often arise when low-level 

modules are trying to communicate with high-level modules. Often the instinct of a 

designer in this case is to have the lower-level module call the higher-level module. This 

dependency loop may be removed with the use of additional hardware interrupts or with 

the careful use of software signaling. 

A common strategy that is used to break dependency loops caused by interpreter 

dependencies is the use of modules on two-levels that work together to provide the 

illusion of infinite resources when finite real resources are available. Typically the lower-

level module provides a fixed number of resources, and is closely connected with the 

underlying hardware. The higher-level module then provides a similar resource, but it 

gives the illusion of unlimited resources by multiplexing the lower-level resources. This 

strategy was used in the design of both a virtual processor system (by Reed [REED76]) 

and of a virtual memory system (by Janson). 
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One of the issues encountered in the implementation of a two-level virtual 

processor is that there are times when the low-level virtual processor must change the 

state of the upper-level process. However, the low-level virtual processor is not allowed 

to know anything about the higher-level processors. What is needed in this case is a 

mechanism that allows upward communication without the sending party having any 

knowledge about the receiving party. Reed’s implementation enabled this by using a 

synchronization protocol based on eventcounts [REED79]. This allows a processor 

interrupt to be tied to an eventcount, so that a higher-level processor can be interrupted 

when the eventcount reached a certain value. This allows for upward transfer of control 

that would otherwise result in an upward dependency. 

4.  Addressing Performance Concerns 

It is a generally accepted assumption that any increase in security must be 

accompanied by a decrease in performance. In the same vein, the performance of a highly 

structured system is often assumed to be inadequate since performance-improving 

shortcuts are generally forbidden. Undoubtedly there is some basis underlying this 

assumption of unacceptably poor performance. Even if the vast majority of previous 

efforts to build highly structured systems have resulted in poor performance, this does not 

imply that building such a system is impossible. There are probably a variety of causes 

that have lead to the negative perception. One possible factor may have been that many 

such efforts have been research projects, which can be considered successful without 

displaying practical performance characteristics. 

In reality, there is evidence suggesting that it is possible to create highly 

structured systems that also provide adequate performance characteristics. Adequate 

performance is, of course, relative, and implies that the systems in question did not incur 

an intolerably high overhead. In fact, the systems that serve as positive performance 

examples were developed and considered usable on now antiquated hardware. Given the 

state of continuing improvements in hardware performance, the minor penalty that may 

be incurred by creating highly-structured code is more than made up for by the advantage 

of comprehensibility. 
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There are a number of design factors that impact performance for any system; 

special consideration of these factors should be taken in the case of designing a highly-

structured system however, since the workarounds and shortcuts that may be available in 

less structured systems will not be possible. 

The choice of language is an important consideration since it directly impacts the 

efficiency of the code, but the quest to build comprehensible, bug-free code often shifts 

the focus toward languages that support features such as strong data typing. 

Unfortunately, there is often no perfect choice: the most popular languages typically 

provide the most efficient compilers but lack the features of strong data typing. 

Conversely, languages that provide strong data typing features tend to be less popular and 

therefore less effectively optimized. 

Implementing components of a system in hardware is a proven way of achieving 

performance gains. A system design that is able to take advantage of hardware support 

will realize a considerable performance advantage over a design that implements all of its 

components in software. Specific types of hardware support can be especially helpful 

with regard to supporting security policies, including process management and switching, 

memory segmentation, input/output mediation, and execution domains. 

It should be noted that attempting to make comparisons of performance is 

notoriously difficult. Comparisons between modern-day operating systems, for example, 

usually indicate more about who is doing the testing than about the relative objective 

performance of the measured systems. Also, it is readily apparent, as Parnas noted, that 

software may be written to perform poorly regardless of the software engineering 

techniques used. So the raw performance measurements are not very telling, but the 

important characteristic to ascertain is whether or not it is even possible to implement a 

system based upon these principles that performs adequately. Although the number of 

systems that have been created using these principles is small, the evidence in sum is 

positive. 
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a. Multics 

The first system considered is Multics, specifically the version of Multics 

that was the product of a redesign effort to improve security. After the redesign of the 

Multics kernel to improve its security, the designers concluded that the use of simpler and 

more modular designs did not result in any significant loss of performance. In one of the 

areas where performance did decrease, the reason for the decrease was clear since the 

code was rewritten in a high level language after initially being programmed in assembly 

language. This type of performance impact is consistent across a wide range of examples, 

and is not necessarily indicative of a deficiency in the structuring techniques. 

b. VAX VMM Security Kernel 

A second project, the VAX Virtual-Machine Monitor security kernel 

[KARG90], provided sufficient performance for production-quality use. In practice, it 

was able to support its’ own development team, and was able to support a large number 

of time-sharing users running multiple operating systems on a single CPU. The designers 

noted that although achieving a high level of performance was difficult, they were able to 

analyze their system sufficiently well to optimize the portions of the system that were 

most performance-critical. The issue in this case was less about the overall structure of 

the system, and more about the language used for coding and ensuring that direct 

interface to the hardware was optimized. One might suppose that the application of these 

engineering principles to creation of a Virtual-Machine Monitor would be easier than to 

the creation of a general-purpose operating system. Although this is true, the performance 

success of the virtual-machine monitor is in a way an even stronger validation of the 

concepts, since any deterioration in performance would be exaggerated in the full-fledged 

operating systems running on top of the virtual machine. The performance success of this 

project is all the more impressive given that the machine successfully limited the 

bandwidth of covert channels using fuzzy time [HU91], which did have a performance 

impact unrelated to the structural design. 

c. GEMSOS Kernel 

The third system for which performance has been evaluated is the 

GEMSOS kernel, which was a commercial operating system that was successfully 
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evaluated against the Class A1 TCSEC requirements and fully utilizes the structuring 

techniques being considered. An early version of the GEMSOS kernel was tested both for 

throughput characteristics – especially with regard to the improvements gained via the 

use of multiple processors – and for the ability to support real-time processing. Both of 

these tests showed that the GEMSOS kernel, even in an early non-optimized version, had 

adequate performance [SCHE85]. This performance was achieved despite the use of 

Pascal as the programming language, which did not provide the most efficient compiler 

available at the time. One noteworthy aspect of the design was that the use of multiple 

processors in the system achieved nearly linear increases in performance. 

d. L4 Microkernel 

The fourth and last system considered is a micro-kernel structured system. 

Although the primary focus of the system is not security, there is a strong synergy 

between the previous efforts, which focus on using rigorous structuring techniques to 

achieve a higher level of assurance regarding security, and the micro-kernel philosophy 

of operating system design. Both schools of thought originated around the same time 

(though independently), and both understood the value of (and were designed to support) 

a highly-modular design. Also, many of the early attempts to produce working micro-

kernel architectures resulted in systems with unacceptably poor performance. 

Efforts to improve the design of the micro-kernel have continued, 

however, and the current “second generation” of microkernel implementations has 

resulted in significantly better performance. Of note is the L4 micro-kernel, which was 

tested extensively by Härtig et al [HART97].  Modifications were made that allowed the 

Linux operating system to run on top of the L4 micro-kernel, and the performance of this 

system was then compared with the performance of native (monolithic) Linux using a 

variety of benchmarking techniques. The L4-based Linux platform, named L4Linux, was 

also compared with the performance of a first-generation micro-kernel, specifically 

MkLinux, which is a version of Linux that runs on top of a micro-kernel based on Mach. 

These tests showed that even the non-optimized L4Linux platform suffered only a 5-10% 

performance penalty from native Linux performance, whereas MkLinux registered a 

much more significant penalty of between 25-50%. The micro-kernel approach of the 
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second-generation kernels the first step toward a system that fully reflects the ideal of 

modular design. Its performance results are then merely suggestive of what may be 

possible in a completely structured system. 

These four examples show that a highly-structured system design for an operating 

system does not necessarily imply that the system will perform poorly: designs that are 

highly-structured, highly-assured, and high-performance do exist, and can be built. 
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VI. CONCLUSIONS 

As the Information Age takes hold and the world becomes increasingly connected, 

the dangers that arise from those interconnections multiply. The U.S. Department of 

Defense is pursuing a strategy of cyber network warfare, hoping to leverage computer 

networks to better enable military capabilities. Yet each new additional capability 

represents an additional information asset that needs to be defended as well as a potential 

new avenue of attack. In the corporate world, the desire for more productivity that is 

being driven by global competition is encouraging an increase in the use of computer 

networks to leverage employee productivity and to improve services. This might lead a 

power company, for example, to consolidate power control centers and to connect power 

control center databases with corporate networks to improve marketing efforts. These 

consolidated control centers, of course, create a much more lucrative target, and 

connecting the control center to the corporate network creates a new avenue for attack. 

Increasingly, the mitigation strategy against these risks has been to add more 

“solutions” to the mix. Now instead of a just a server, there are firewalls, intrusion 

detection systems, anti-virus products, public-key encryption systems, etc. Often such 

solutions consolidate security management responsibilities, creating a situation where the 

new systems need to be more trustworthy than the systems for which they provide 

protection. And each new system brings its own management challenges and 

maintenance requirements. Ironically, most of these systems are based on a commercial 

off-the-shelf operating system foundation, just the system whose deficiencies were part of 

the reason for adding additional security measures in the first place. This mitigation 

strategy has even become policy for the Department of Defense [DOD02]. 

Unfortunately, this strategy does nothing to mitigate against the threat of subversion, 

the type of attack that has the greatest potential for damaging the nation’s critical 

infrastructures and compromising national security. Subversion, which is no more 

difficult to implement than other types of attacks, is unaffected by additive security 

measures. 



 68 

In March of 2000, Steve Cross, director of the Software Engineering Institute at 

Carnegie Mellon University (home of the CERT Coordination Center), provided 

testimony before the Senate Armed Services Committee: Subcommittee on Emerging 

Threats and Capabilities [CROS00]. After providing an overview of the vulnerabilities of 

the Internet, and the impact of known security breaches, he recommended solutions. One 

of his recommendations concerning research and development was to: “leverage past 

investment that has produced an extensive, but little used, body of knowledge in rigorous 

methods for system analysis and design….” 

The techniques for developing systems that provide a high level of assurance of their 

correct operation already exist. Without application of these techniques toward the 

creation of commercially-available products, however, the never-ending battle of wits 

between attackers and defenders will remain the only game in cyberspace. The use of 

such products is inevitable, for the day will come when the cost of the “battle-of-wits” 

will simply be unsustainable. The only question is when such efforts will be 

reinvigorated. Hopefully, it won’t take some incident of cyber-terrorism to provide the 

awareness and resolve necessary to counter subversion. 

There is at least one attempt being made to capture the lessons learned from past 

high-assurance development efforts and create a worked example that can be used to 

educate future students and developers. The Center for INFOSEC Studies and Research 

(CISR) is embarking on a project to create a “Trusted Computing Exemplar” that will 

serve as such an example [IRVI03]. 
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